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Abstract. Let X be an arbitrary topological space, and C (X) the convex cone

of upper semicontinuous bounded functions onX. Further, let C ∗(X) be its dual,

i.e., the convex cone of functionals that are additive, positively homogeneous, and

monotone. On C ∗(X), we define the weak* topology as the coarsest topology

such that, for any f ∈ C (X), the evaluation map µ 7→
∫
fdµ is continuous. Then,

the unit ball in C ∗(X) is compact in the weak* topology. However, even if X

is compact, (i) functionals in C ∗(X) need not be representable as integrals, and

(ii) the space of regular Borel probability measures on X may fail to be compact

in the weak* topology. In sum, these observations correct a misrepresentation

in the literature and show that the standard approach to establishing mixed-

strategy equilibrium existence cannot be easily extended to the non-Hausdorff

case.
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1 Introduction

A beautiful theorem attributed to Alaoglu (1940) says that the unit ball in the

space adjoint to an arbitrary Banach space is compact in the weak* topology.

Especially in the case where the Banach space in question is the space of con-

tinuous bounded real-valued functions on a topological space X, this result is of

substantial applied value. For instance, combined with the Riesz representation

theorem (Dunford and Schwartz, 1958, Thm. IV.6.3), it shows that the space of

regular Borel probability measures on a compact Hausdorff space is compact in

the weak* topology, which is—up to the present day—a crucial step in the deriva-

tion of conditions sufficient for the existence of mixed-strategy Nash equilibria

in noncooperative games (Glicksberg, 1952; Fan, 1953; Reny, 1999).1

In this paper, we investigate the feasibility of developing an analogous the-

ory based on semicontinuous functions. There is, in fact, a simple economic

rationale for restricting attention to upper or lower semicontinuous functions,

because that condition is much tighter than continuity in guaranteeing the ex-

istence of a maximum or minimum of an objective function on a compact space

(cf., e.g., Gutiérrez, 2009, p. 132). But also from the perspective of topological

measure theory (Pollard, 1976; Bogachev, 2007, Ch. 7), the use of semicontinu-

ous functions suggests itself in a natural way when the underlying space is not

necessarily Hausdorff, because the system of continuous functions may be “too

small” in that case, in the sense that points of the space cannot be separated in

general.2 For convenience, we will mostly focus on the case of upper semicon-

1The compactness of the space of regular Borel probability measures on a compact Hausdorff
space was long treated as folklore in the game-theoretic literature, until Glycopantis and Muir
(2004) provided a detailed proof.

2While the compactness assumption reflects a strong economic intuition (Bergstrom, 1975;
Walker, 1977; Gutiérrez, 2009), the rationale for using the Hausdorff separation axiom, except
that it naturally holds in metrizable spaces, has remained less clear. For example, it is known
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tinuous (henceforth u.s.c.) functions, noting that the adaptions to the analysis

necessary to deal with the case of lower semicontinuous (l.s.c.) functions are of

a minor nature only.

We start on the positive side by establishing a variant of Alaoglu’s Theorem.

Given a topological space X, we denote by C (X) the convex cone of real-valued

functions on X that are u.s.c. and bounded. We denote by C ∗(X) the dual cone,

defined as the set of positively homogeneous, additive, and monotone functionals

on C (X). It turns out that any functional in C ∗(X) is both bounded and

continuous in the topology induced by the supremum norm. Thus the topological

and the algebraic duals coincide in this case. On C ∗(X), we are interested in

the weak* topology, i.e., the coarsest topology that renders all evaluation maps,

corresponding to u.s.c. and bounded test functions, continuous. We show that

the (conical section of the) unit ball in C ∗(X) is compact in the weak* topology.

A similar result holds for the unit sphere. These results do not assume that X

is Hausdorff.

However, and this is the main point of the present paper, our analogue of

Alaoglu’s theorem does not guarantee, even if X is compact, that the space of

regular Borel probability measures onX, denoted henceforth by P(X) is compact

in the weak* topology. To explain this point, we first note that a functional in

C ∗(X) need not admit a representation as an integral with respect to a Borel

measure on X. We present an example (Example 1) of a functional that is not

from Sion (1958) and Reny (1999) that neither the existence of a value nor the existence of
pure strategy Nash equilibrium hinges on any separation axiom. In a similar vein, Balder
(1999, App. A) extended Kakutani’s fixed point theorem to non-Hausdorff spaces. See also
Goubault-Larrecq (2018) and Khan et al. (2024). It is therefore remarkable that, with the sole
exception of Mertens (1986), the Hausdorff assumption has been imposed in virtually every
analysis of mixed-strategy Nash equilibria.
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in the image of a canonical mapping

P(X) → C ∗(X). (1)

Here, X is chosen as the countably infinite set of the natural numbers, equipped

with the cofinite topology, and the functional returns the infimum of any u.s.c. and

bounded function on X. Thus, the Riesz representation property fails in the ex-

ample. The discussion seems useful because this point has been misperceived in

the literature.

Based on the failure of the Riesz representation property, we deduce the

lack of compactness of the space of regular probability measures. We advance the

discussion of the anomaly above by constructing an explicit instance of an infinite

cover of P(X) that does not admit a finite subcover (Example 2). Each open set

Vn in the cover, for an integer n ≥ 1, consists of measures that are mixtures giving

weight of 1
2
to some distribution with support contained in {1, . . . , n}. As P(X),

in this case, corresponds to the set of convergent series with nonnegative terms,

this cover has the desired property. These observations constitute a barrier for

a generalization of standard existence proofs for mixed strategy Nash equilibria

to non-Hausdorff strategy spaces.

The remainder of this paper is organized as follows. Section 2 reviews the

related literature. Section 3 contains preliminaries. Section 4 presents our variant

of Aloglu’s theorem. In Section 5, we show that the Riesz representation property

may fail in our setting. In Section 6, we show that the space of regular Borel

probability measures need not be compact. Section 7 concludes.
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2 Related literature

The proof of our variant of Alaoglu’s theorem follows established routes (Dunford

and Schwartz, 1958, V.4.2). Several authors, such as Garćıa-Raffi et al. (2004),

Plotkin (2006), and Stonyakin (2018), have obtained related results. However,

our specific set of assumptions is not covered by those analyses.

The anomaly captured by Example 1 has been documented before by Topsøe

(1976, Ex. 1) for the convex cone of nonnegative functions on the integers with

well-defined limit, and by Gignac (2014, Ex. 3.7 and Cor. 5.5) for the vector

lattice generated by the bounded semicontinuous functions on a non-complete

Noetherian space. The present analysis transports the insights contained in those

works to the dual of the convex cone of u.s.c. functions on an arbitrary topological

space, and thereby underscores the importance of the anomaly for the applied

theory of noncooperative games.

Regarding the topological properties of the space of Borel measures, Gignac

(2014, p. 1782) wrote that “the measure theory of non-complete spaces lacks the

nice properties of the measure theory of complete Noetherian spaces” (such as

compactness). However, he did not provide an example (such as our Example 2)

illustrating the lack of compactness of P(X).3

3 Preliminaries

This section introduces the convex cone of upper semicontinuous bounded func-

tions (Subsection 3.1), its dual (Subsection 3.2), and norms on both cones (Sub-

section 3.3).

3Mertens (1986, pp. 243-245) outlined a “measure theory” for non-Hausdorff compact spaces
including a generalization of the Riesz theorem and a proof of the compactness of P(X). Given
the brevity of exposition, however, that article does not provide an immediate answer to the
issues explored in the present paper. For further discussion, see Section 7.

5



3.1 The Convex Cone of U.S.C. Bounded Functions

Let X be an arbitrary topological space (not necessarily Hausdorff). A real-

valued function f on X is upper semicontinuous (u.s.c.) if, for every c ∈ R, the

upper contour set {x ∈ X : f(x) ≥ c} is closed.4 We denote by C (X) the set

of u.s.c. and bounded real-valued functions on X. Since C (X) is closed under

finite sums and under multiplication by nonnegative scalars, it forms a convex

cone. Moreover, there is a canonical injection R ↪→ C (X), i.e., C (X) contains

all constants. Let 0,1 ∈ C (X) denote the constant functions that are equal to

zero and unity on X, respectively. C (X) is partially ordered in the usual way.

For f, g ∈ C (X), we write f ≥ g if f(x) ≥ g(x) for all x ∈ X.

3.2 The Dual of C (X)

A functional σ : C (X) → R is additive if σ(f + g) = σ(f) + σ(g), for any

f, g ∈ C (X). It is positively homogeneous if σ(λf) = λσ(f), for any f ∈ C (X)

and any λ ≥ 0. A functional σ : C (X) → R is monotone if σ(f) ≥ σ(g), for

any f, g ∈ C (X) such that f ≥ g.5 Let C ∗(X) denote the set of functionals

on C (X) that are additive, positively homogeneous, and monotone. It is again

straightforward to check that C ∗(X) is a convex cone, referred to in the sequel

as the dual of C (X).

Lemma 1. Let c ∈ R be a constant. Then, σ(−c) = −σ(c), for any σ ∈ C ∗(X).

If, in addition, σ(1) ≤ 1, then |σ(c)| ≤ |c|.

Proof. Since −c ∈ C (X), additivity and positive homogeneity jointly imply

4The upper topology on R has open sets of the form ∅, R, or (−∞, a) for a ∈ R. Then,
a function f : X → R is u.s.c. if and only if f is continuous relative to the upper topology
(Kelley, 1975, p. 101).

5For a positively homogeneous functional σ : C (X) → R, we have σ(0) = 0, where 0 denotes
the zero function on X. In this case, therefore, monotonicity implies nonnegativity, but the
converse is not true in general.
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σ(−c) + σ(c) = σ(0) = 0, i.e., σ(−c) = −σ(c). This proves the first claim.

Assume that σ(1) ≤ 1. Then, σ(−1) = −σ(1) ≥ −1. Hence, |σ(c)| ≤ |c|,

proving the second claim.

Given any f ∈ C (X), we define the functional f ∗ : C ∗(X) → R via f ∗(σ) = σ(f).

On C ∗(X), the weak* topology is the coarsest topology such that f ∗ is continuous

for any f ∈ C (X). A neighborhood basis for the weak* topology at some point

σ ∈ C ∗(X) consists of sets of the form

Uf1,...,fK ,ε(σ) = {τ ∈ C ∗(X) : |τ(fk)− σ(fk)| < ε, ∀k ∈ {1, . . . , K}},

where f1, . . . , fK ∈ C (X) and ε > 0. It is straightforward to check that C ∗(X)

is locally convex and Hausdorff.6

3.3 Norms on C (X) and C ∗(X)

The usual norms are not needed for the subsequent development. To ease the

comparison with the literature, however, we equip C (X) with the supremum

norm

∥f∥ = sup
x∈X

|f(x)|.

It is then immediate that, for any f ∈ C (X), we have ∥f∥ = 0 if and only

if f = 0. Moreover, ∥rf∥ = r∥f∥ for any r ∈ R+ and f ∈ C (X). Finally,

∥f + g∥ ≤ ∥f∥+ ∥g∥ for any f ∈ C (X). Thus, C (X) is a normed cone (Garćıa-

Raffi et al., 2004; Stonyakin, 2018). Given f ∈ C (X), the ε-neighborhood of f

is defined as the set

Uε(f) = {f + g : g ∈ C (X) and ∥g∥ < ε}.
6By saying that C∗(X) is locally convex, we mean that each functional has a neighborhood

base consisting of convex sets.
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We call the topology in which these ε-neighborhoods form a neighborhood basis

the norm topology on C (X). We say that a functional σ : C (X) → R is bounded

if

∥σ∥ = sup
f∈C (X),∥f∥=1

|σ(f)| < ∞.

Lemma 2. Any functional σ ∈ C ∗(X) is both bounded and continuous in the

norm topology.

Proof. Take σ ∈ C ∗(X). We will show first that σ is bounded. Take any

f ∈ C (X) such that ∥f∥ = 1. Then, −1 ≤ f(x) ≤ 1 for all x ∈ X. Hence, −1 ≤

f ≤ 1. By monotonicity and σ(−1) = −σ(1), we get −σ(1) ≤ σ(f) ≤ σ(1),

so that |σ(f)| ≤ M ≡ σ(1) < ∞. Hence, σ is bounded. Next, we show that σ

is continuous. By positive homogeneity, |σ(g)| < ε for all g ∈ C (X) such that

∥g∥ < δ = ε
M+1

. Thus, starting from any f ∈ C (X) and ε > 0, we find δ > 0

such that σ(f + g) = σ(f) + σ(g) is less than ε apart from σ(f). It follows that

σ is continuous relative to the norm topology.

By Lemma 2, each functional has a finite norm, so that C ∗(X) is a normed

cone. As usual, the norm topology, which intuitively corresponds to uniform

convergence, is stronger than the weak* topology, which corresponds to pointwise

convergence.

4 Modifying Alaoglu’s Theorem

We define the unit ball in C ∗(X) by

B = {σ ∈ C ∗(X) : σ(1) ≤ 1}.

Given that C ∗(X) is a convex cone, B is not really a ball geometrically. How-

ever, we adopt the term for convenience. The following result is an analogue of

Alaoglu’s theorem.
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Proposition 1. The unit ball B is compact in the weak* topology.

Proof. For any f ∈ C (X), the interval If = [f, f ] ⊆ R, with f = infx∈X f(x)

and f = supx∈X f(x), is compact in the usual topology on R. Hence, by Ty-

chonoff’s theorem (Kelley, 1975, Thm. 5.13), the product space

I =
∏

f∈C (X)

If

is compact as well. For any f ∈ C (X), let πf : I → If denote the canonical

projection. Define the subsets

A(f, g) = {σ ∈ I : πf+g(σ) = πf (σ) + πg(σ)},

B(f, λ) = {σ ∈ I : πλf (σ) = λπf (σ)}.

for all f, g ∈ C (X) and λ ≥ 0. Further, let

D(f, g) = {σ ∈ I : πf (σ) ≥ πg(σ)},

for all f, g ∈ C (X) such that f ≥ g. Since these subsets are closed, so is

Î =

 ⋂
f,g∈C (X)

A(f, g)

 ∩

 ⋂
f∈C (X),λ≥0

B(f, λ)

 ∩

 ⋂
f,g∈C (X),f≥g

D(f, g)

 .

We now claim that

B = {σ ∈ C ∗(X) : σ(f) ∈ If for any f ∈ C (X)}. (2)

The inclusion ⊇ is immediate from the fact that 1 ∈ C (X). Conversely, take

σ ∈ C ∗(X) such that σ(1) ≤ 1. We have to show that f ≤ σ(f) ≤ f , for any

f ∈ C (X). Take any f ∈ C (X). If f = f , then σ(f) = σ(f) = fσ(1) = f .

This proves the claim in this case. Suppose, therefore, that f > f . Define

g = (f − f)/(f − f). Note that 0 ≤ g ≤ 1. Therefore, 0 ≤ σ(g) ≤ 1, which

implies f ≤ σ(f) ≤ f , as has been claimed. This proves (2). Finally, consider
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the mapping Φ : B → Î, defined by Φ(σ) = σ(f). Then, Φ is a homeomorphism

relative to the respective weak* topologies. Hence, B is indeed compact in the

weak* topology.

A minor but important distinction arises between the unit ball, which is the

object in Alaoglu’s theorem, and the unit sphere, which is the subset thereof

corresponding in the classical approach to regular probability distributions via

the Riesz representation theorem. We define the unit sphere in C ∗(X) by

S = {σ ∈ C ∗(X) : σ(1) = 1}.

By the general properties of initial topologies (Bourbaki, 1966, § 2.3), the sub-

space topology induced by the weak* topology on the unit sphere is the coarsest

topology for which all functionals f ∗, restricted to S, are continuous, for any

f ∈ C (X). We then get the following result.

Corollary 1. S is compact in the weak* topology.

Proof. Both B = {σ ∈ C ∗(X) : π1(σ) ≤ 1} and B′ = {σ ∈ C ∗(X) : π1(σ) ≥ 1}

are weak* closed subsets of C ∗(X). Since S = B ∩ B′, the claim follows from

Proposition 1.

5 Failure of the Riesz Representation Property

Suppose that X is compact. Then, for any Borel probability measure µ ∈ P(X)

and any bounded u.s.c. function f ∈ C (X), the Lebesgue integral
∫
fdµ is

defined as usual. The following example, inspired by Gignac (2014), shows that

the canonical mapping (1) from regular Borel probability measures on X to the

unit sphere in C ∗(X) is not surjective.
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Example 1. Let X = N be the set of natural numbers, equipped with the cofinite

topology. Thus, the open sets are the empty set and complements of arbitrary

finite sets. Then, X is compact. C (X) consists of functions f : X → R of

the form f(x) = c + cx, where c ∈ R is a constant and independent of x, and

cx ≥ 0 with {x ∈ X : cx > ε} is finite for any ε > 0. Let σinf : C (X) → R

be the functional defined by σ(f) = c. Then, σinf ∈ C ∗(X). We claim that σinf

cannot be represented as an integral. Indeed, suppose σinf = {f 7→
∫
fdµ} for

some Borel probability measure µ. Then, for each x ∈ X, we have µ({x}) =∫
X
1xdµ = σinf(1x) = 0, so µ = 0, in contradiction to the assumption that µ is a

probability measure.

The “infimum functional” σinf ∈ C ∗(X) constructed in the example admits no

representing measure µ ∈ P(X), showing that the representation property breaks

down in the non-Hausdorff case. Notably, the issue does not lie with the regular-

ity requirement for measures in P(X). Therefore, the example directly refutes

Fuchssteiner (1977, Main Thm. & Cor. 4).7 A similar error occurs in Fuchssteiner

and Lusky (1981, p. 211).

6 Failure of the Compactness of P(X)

As we are going to show now, P(X) need not be compact in the weak* topology.

Example 2. We build on Example 1. For n ∈ N, let

Vn = {µ ∈ P(X) :
∫
δ{1,...,n}dµ > 1

2
},

where δ{1,...,n} ∈ C (X) is the indicator function of the closed set {1, . . . , n} ⊆ X.

The collection {Vn}∞n=1 is an open cover of P(X) in the weak* topology. However,

7Indeed, in view of Example 1, the step in the proof of Fuchssteiner (1977, p. 179) that
deduces “µ̃n ≤ supMn

on E” seems too strong.
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no finite subset of it covers P(X). Thus, P(X) indeed lacks compactness in the

weak* topology.

7 Concluding Discussion

The analysis implies that the weak* topology, as defined above, is, in general, too

strong to ensure that the space of regular Borel probability measures on a non-

Hausdorff compact space is compact. A natural topology on C ∗(X) even weaker

than the weak* topology has been considered by Topsøe (1970). Specifically,

this is the coarsest topology for which the mapping µ 7→
∫
fdµ is u.s.c., for any

f ∈ C (X).8 Clearly, with fewer sets being defined as open compared to the

weak* topology assumed in Proposition 1, both the unit ball and the unit sphere

are compact in Topsøe topology. However, in the non-Hausdorff case, no rigorous

proof seems available for Mertens’ (1986) assertion that P(X) is compact in that

topology, making it hard to judge the suitability of that topology for our specific

game-theoretic purpose.9 These questions must therefore be left for future work.

References

Alaoglu, L. (1940). Weak topologies of normed linear spaces. Annals of Mathe-

matics, 41(1):252–267. 2

Balder, E. J. (1999). On the existence of Cournot–Nash equilibria in continuum

games. Journal of Mathematical Economics, 32(2):207–223. 3

Bergstrom, T. C. (1975). Maximal elements of acyclic relations on compact sets.

Journal of Economic Theory, 10:403–404. 2

8In fact, this topology coincides with the coarsest topology for which the mapping µ 7→∫
fdµ is l.s.c., for any l.s.c. and bounded function f : X → R.
9For instance, while the sets Vn constructed in Example 2 fail to be open in Topsøe’s

topology, this obviously does not prove that P(X) is compact in the Topsøe topology.

12



Bogachev, V. I. (2007). Measure Theory, Volume II. Springer, Berlin. 2

Bourbaki, N. (1966). General Topology. Parts 1 & 2. Elements of Mathe-

matics. Hermann / Addison-Wesley Publishing Company, Paris; Reading, Mas-

sachusetts. Translation of Topologie Générale. Part 1: vii+437 pp.; Part 2:

viii+363 pp. 10

Dunford, N. and Schwartz, J. T. (1958). Linear Operators, Part 1: General

Theory. John Wiley & Sons, Hoboken, NJ. 2, 5

Fan, K. (1953). Minimax theorems. Proceedings of the National Academy of

Sciences, 39(1):42–47. 2

Fuchssteiner, B. (1977). When does the Riesz representation theorem hold?

Archiv der Mathematik, 28(1):173–181. 11

Fuchssteiner, B. and Lusky, W. (1981). Convex Cones, volume 56. Elsevier. 11
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